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ABSTRACT

Propagation of waves in curved ducts and pipes belong to the class of
motion which is characterized by wave patterans totally different from
those known in straight ducts or in unlimited space. The curvillinesar
boundaries are responsible Tor the appearance of a continuous standing
radial wave which in turn affects the transmitted tangentiasl waves.

The purpose of this paper is to solve the problem of propagation of long
acoustic waves in slightly and sharply bend ducts. This problem has
been only partially analyzed by various authors. In this study two
acoustic systems ars considered which allow determination of the basic
modes of motion and describe the transition and distortion of plane
waves as they propagate down the curved channel. A detailed study of
the behavior of waves in junctions between straight and curved ducts is
also given, Solutions and expressions for principal modes of the wave are
obtained by using the linearized equation of motion solved for its
characterigtic valiues. Thig original approach required & novel use of
Bessel functions te determine the characteristic values of the steady
and the decaying fields of moticn.

INTRODUCTION

i gveguides or bent ducts is difficult
odels eweicped to date are complicated
the resgong why relatively few papers are avail-

The first rec gnLuLU of the problem of propagation of pressure waves
in & curved conduit, as distinct from the motion in a straight line,
was Tormulated by Rayieigh \Ref, 1), In a short, briilient expose he
demoustrated that long waves in & curved pipe of infinitesimal cross
section behave ex a»tly a3 in & straight pipe. The curvature of the
pipe is of no meGEIaL . His analysis is based on the linearized
eguation of motion x& conclusicnsg are not valid if the cross section
of the pipe ig finite.

*University of Louvain, Belgium.




Subsequent research of wave motion in curvilinear ducts is almost
exclusively analytical and the majority of papers treat the propaga-

tlcn of electromagnetic waves in curved ducts., Only a few discuss the
propagation of sound waves, Interestingly enough, along with analyti-
cal Tormulation of the behavior of waves in bends there appearsed a

gseries of papers dealing with methematics needed to solve the physical
problem of waveguides., This parallel effort indicates that the solution
of the problem of bent waveguides requires mathematical formulations and
technigues not generally availabie, A number of papers published between
1939 and 1969 &id contribute to the problem. Buchholz (Ref. 2), using
separation of variables obtains a solution for propagation of electro-.
magnetic waves in slightly bent waveguides of infinite length. He cal-
culates an expression for a wave propagation constant and draws several
general conclusions sgbout behavior of waves in bends. Buchholz's paper
ig the first contribution to the problem of progressive waves., The
preblem of the infinitely long bend was also treated by Krasnushkin

(Ref, 3), Crigor'yan (Ref. L), and others. Krasnushkin approaches the
problem by the method of separation of varisbles but in view of mathe-
metical difficulties proposes a perturbation method and treats the gimm
plified case of the slightly bent tubes. Grigor'yan solves the differen—
tial equation by expansion of the cross product of Bessel functions into
a Teaylor series, He tries to obtain an algorithm of sufficient generality
to be gpplicable to all possible impedances of the waveguide walls.

The method is only partially successful. Grigor'yen obtains correct
general informstion on amplitude and distribution of the radial os-
cillations but his basic mode wave number does not verify the differen-
tial equation except for the Raleigh case of very narrow pipe.

Among the few treatises on propagation of sound in bends are
thoge by Miles (Refs. 5 and 6) in which he establishes an analogy between
bropagation of sound and an electricgl transmission line are most im- -
vortant, The method is then epplied to a right angle joint of rec-
tangular tubes,

Ihe work of Miles was checked by Lippert (Refs. T to 9). Lippert
esents an experimental study of sound wave propagation in mitered
ends oI various angles. The experiments were conducted over a wide

range of freguencies and show that long waves in mitered bends propa-
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nificant reflections,

th inslg

considers propagation of long acoushbic waves in
f

& ser Rostafinski (Ref. 10). Established will be the radial
and the angulay st tion of the vibrational velocities. The mathemat=

Leal trestment of the problem ubtilizes the method of separation of variables,
solutions and expressions for principal modes of the wave are obtained by

using the lineariged equation of motion solved for its characteristic values,




GENERAL SOLUTION

Determination of Figenvalues

The linearized wave equation in eylindrical coordinates is known to
be separable, and since the superposition of solutions is allowed the
general solution may be written

- i(ut+a), .
¢ ~/éﬂe (a, cos ve + sin ve)[A J (kr) + B Y (kr)]av

i(wt+a)

e (co + a)[a T, (kr) + B, (kr)] (1)

where C 1is a set of points in the complex plane, to be determined in
order to satisfy the boundary conditions.

The solution for v = 0 might have been included in the integral
terms but in order to show more explicitly the linear dependence on 6
of this solution, it has been written separately.

To satisfy the partial differential equation and the boundary condi-
tions for perfectly rigid circular walls, a characteristic equation will
be found whose roots will be the characteristic values of the problem:

a set of values of the separation paremeter v which will yield a non-
trivial solution of the problem. Differentiating equation (1) with
respect to r and equating to zero we obtain for the two circular
boundaries Rl and R

2
' + 1k =
AvJv(le) BvYV( Rl) 0 |
v #O0 (2s)
1 1 -
AVJv(kRz) + Bva(kRg) 0
' 1 =
AOJO(le) + BOYO(le) 0
v =0 (2b)
=0

t A i -~
AOJO(kRZ) + BOYO(kRQ)

In the present case where O < (kr) < (kR.) << 1, with the steep slope

of Yj(kr) and relatively moderate increaSe of Jp(kr) over the range
(kR7) to (kR,), there is no solution in the range under consideration.

Consequently, the solution v = O cannot be considered. To ’
evaluate the vp's we expand the J), and Jly in terms of increas-
ing powers of the argument (ekRy) = (kRp) and (kRy). If we limit the
expansion in the first approximation to the first term we cbtain




2 - ¢ ' - ' )T
J [<le)~v—l (kaRl)V 1 _ (le)v 1 (kaRl) v 1] = (
sin muT{v + 1)(1 -~ v)
and finally
‘ V (av—l _ a‘V‘l) = 0 (3)
ﬂ(le)'

Soluticon v = 0 has been already rejected. Therefore, the only
acceptable solution must satisfy the equation

Vel 1 =ye]
a, = g
which may be put in the form
2v 2vina
a =1 or e =1
Hence, 2vina = 2mni; that is
Vo m e m=1,2,3.,..) (L)
m
ina : ‘

Better aspproximations will be given by the second and following terms of
e¥xpansion of J; and J'V, The result is

I ~
2.2
(’1«:31)2(a2 - 1) + 2T
2
vy = i< LU (1n &) > (5)
In a m2w2
: bmm |1 +
W2
9 (In a) J
and Ior m = 0 the transformation gives
' 2
/- 5 a - 1
g = ln & (6)
© 2
h(le)"2+a2+1+a =L

In &
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There is an infinite set of pure imaginary roots v_ given by equa~

tion (5) and one single real root. The obtained eifenvalues sllow us

to write a complete solution in which only the integration coeffiecients
in m are to be determined by proper boundary condition at the inlet

and outlet of the duct. This determination is a relatively simple matter.

TYPTICAL PHYSICAL SYSTEMS

Infinite Bend

. Suppose an infinitely long circular duct (Fig. la) for which the
closest physical example is a tightly wound coil of which the pitch is
negligible compared to the radius of curvature of the duct. The far
end boundary condition for an infinite duct is that no reflection of
waves must be considered.

The integrated equation for the velocity potential ¢(r,0,t) for an
infinite bend may be written directly by substitution of the derived ex-
pressions for the integration constants

v R, ilwb=v 6) .
$ = 12k o °© 2zl o4 (xr)?/e+ evi - e(le)2 - (le)2 n -
v, in a Ry

2,4 m

v R e L
_ vi(ln z>] s o1 dut
mup (1 )

=y O - ‘
o "m” & cos m l\»“‘z“ (1 - 2)
R b

m=7]

)2 2

1 1

+ (R )% + (kr)ﬂcos<g 1n &) + L(xr
1 m R

and without terms small of the second order

v, a1 i(wt—voe)
6(r,6,t) = 1 —R_ = e
v

1 In a

R, . © it -y 0 :
-2 ZQ—; Ut ? : s cos(mm) -1, ™ cos<%m 1n £~>
'.2 R
'n. + 1,
m(l + )

m=1

o

+ zum(kR 92 _ Qﬂi(kr)g gin “mén L) (7)




The propagation of waves in a curved duct is profoundly influenced
by the curvature of the conduit. The amplitude of vibrational velocities
is & function of both inner radius Ry and of the radii ratio a = Rg/Rl.
The tangential vibrational velocities are almost exactly inversely pro-
portional to radius, that is, velocities follow the distribution of s
potential vortex. The radial vibrational velocities are approximately
two orders of magnitude smaller than the tangential velocities.,

The phase veloeity of waves is also affected by bending of ducts,
For a bend, the phase velocity is 6 = w/v » 85 obtained from
(wt - v 68), while for a straight duct it i8 x = w'k, as given by
(Wt - kX). To coumpare the two velocities we average the tangential
phase velocity, 6r = s over the duct width and obtain s| = w/ (Vo) Ryeap -
The ratio of the two velocities is :

° , kR

8 W mean
— Rm = ———
x c v v

o o}
Clearly, the phase velocity in bends is always higher than in straight ducts.

The attenuated tangential vibrations which characterize change from
motion of plane waves in straight duct to motion in a curved duct are
examined in the next two figures. Figure 2 gives results of a sample
calculation illustrating the behavior of those oscillations for g duct
of radii ratio a = 2. The vibrations are basically of low amplitude.
Even close to the piston, at 6 = m/16, they are one order of magnitude
smaller than vibrations of the nondamped, propagating wave, The radial
digtribution of these oscillations changes significantly with wave angular
position in the duct. At 6 = T/L  these oscillations are reduced to
& very low level and are nearly uniform across the width of the duct .,
Figure 3 shows the same oscillations caleculated for three different duct
widths but'withha single angular position of 6 = /4, The curve for
a8 = 2 was taken directly from figure 2 for comparison purposes. The
two other curves indicate that the decaying oscillations are much more
Proncunced and extend farther when induced in wider ducts.,

The radial vibrational velocities, which characterize motion of
waves in curved ducts, for long waves, are of low amplitude. The per-
manent, standing oscillations are shown in figure L. They are caleulated
for duct radii ratios of 2, 3, and k. Generally the amplitude of these
oscillations is low, epproximately two orders of magnitude smaller than
the tangential velocities. The radial distribution is characterized by

the lack of symmetry. The maxima of curves are shifted toward bend's
inner wall,

This phenomenon is even more pronounced in the case of the nonpro-
pagating, damped, radial oscillations at the curved duect inlet. The
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amplitude and radial distribution of these oscillations is shown on
figure 5 for three values of parameter a and 6 = 7/k, For a = 2 the
permanent and the vanishing oscillations are of approximately the same
amplitude. For a = 3 and L the decaying oscillations are sbout twice
as large as the radial oscillation of the propagating wave. Therefore,
the process of decay is much slower when ducts are wide. ‘

62 Radians Bend Followed by a Straight Infinite Duct

To analyze the motion in the system bend-straight duct, it is neces—
sary to solve

éi: ?..d_)- a-t 2

1

and

r 96 9x or oy % = 0

that is, the continuity conditions at the junction bend-straight tube,
of a system illustrated on figure 1b,

Solving the differential equations and evaluating the constants of
integration we obtain the velocity potential

v R i(wt-v _8)
¢(r,e,t) =3 o 1 8 - 1 e 0
v 1n a
o]
. v R = .
4+ olut o1 a cos(mm) - 1 cos <;m 1n 3_)
m 2 R
m(1 + um) 1
m:
u_8 T
T -v 6 ( m m )
x| =2¢ s Qm e o2 \e = (8)
um62
e
~iv 6 , ]
where the term e © results from evaluation of a set of integration

constants at x = 0 which is at 6 =6, and not at 6 = 0 -and could
be avoided should the coordinate 6 of the bend be counted clockwise
from the junction bend-straight duct. B8, is a set of coefficients
resulting from matching of vibrational velocities at the junction. B
are smaller than one.

m

The derived solution is very general. It applies to radii ratios of
the bend in the range from 1 to 10; it has no limitations as to the
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length oI the bend which may range from a small fraction of 7 to an
infinite coil, This wide range of applicability'was obtained by retain-
ing in the solution, terms which are two orders of magnitude smaller
than the principal terms. The first two terms of equation (8) are those
of equation (T) of the wave motion in an infinite bend. The first term
is & gimple wave, the second the attenuated vibrations near the inlet
section of the bend. The third term represents attenusted vibrations

in the negative direction of 6, an adjustment of wave motion to discon-
tunuity at the junction bend-straight duct. This term is identically
zere at 9 = 0 and increases to a maximum st 0 = 62.

The velocity potential in the straight, infinite duct is approxi-
mately

1(wt—v062)

$(y.x,t) = e i ~ikx

o fo{
[¢)]

A L S
. == cos mn m

2 n 2
L/ 2)

n=1 _ ‘ m=]1

o e R e
ev R\ \¢z - Vc +k
o 1\ n [Zn(y . L>J e U 'm L& cos(mm) - 1 5

(1 + u

where Ap, 1is a set of integrals in m and n.

The calculation of the vibrational velocities in the bend and in the
straight duct that follows the 90 degree bend is straightforward. Re-
sults are reported on figure 6.

In the straight duct the waves are straightening out relatively fast,
By x/2L = 1 there is already an almost straight wave similar to that
which was generated at the bend inlet. Essentially, the process of
straightening out of the wave is confined to the straight duct.

The verification of the simultaneous solution of the equations of
motion for the bend and for the straight duct is shown on figure 7.
The calculated tengential vibrational velocities for r = Rl and
© = Rp for positions starting at the vibrating piston, through the
tend and in the straight duct are taken from figures 11 and 12. The
rapid changes in velocities by the bend exit are well illustrated. In
spite of this, the values calculated for the bend match very well the
valueg calculated for the straight duct.



CONCLUDING REMARKS

Propagation of long waves in a two-dimensional system has been
analyzed. The acoustic approximation has been used and the Helmholsz
equation was integrated for two sets of boundary conditions. The two
- physical systems taken into consideration are: an infinite bend ap~-
proximating a coil and a 90° bend followed by a straight, infinite
duct approximating a typical industrial piping system.

The results of the analysis indicate that bending of a straight
duct profoundly modifies the propagation of waves in that duct. The
bend engenders the following phenomena:

1. a set of attenuated axial and radial waves which modify the

plane wave generaged at the duct's inlet

2. a continuous radial, standing wave whose radial vibrations are

sustained by the curvature of the bend. In a straight duct
these vibrations would be quickly attenuated

3. a vortex-type distribution of the tangential vibrational veloc-

ities.

The presented analysis is not directly applicable to real flows
because it is based on a linearized equation valid for acoustical waves
in stationary medium only. It gives, however, an idealized picture of
wave's behavior in bends, in general.
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{b) 90° Bend followed by an infinite
straight duct.

Figure 1. - The two physical systems considered.
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Figure 2. ~ Attenuated tangential vibrational velocities for three angular positions in a bend.
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Figure 3. - Attenuated tangential vibrational velocities for three bends at 0= 7lA.
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Figure 4. - Standing radial vibrational velocities
in bends for three Ry and three values of a.
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‘Figure 5. - Attenuated radial vibra-
tional velocities at bend's inlet.
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(b) Distribution of tangential vibrational velocities at bend outlet,
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Figure 6. - 90° Bend followed by a straight duct. Distribution of {/ibrational velocities.
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Figure 7. - Propagation in bend-straight duct system. Tangential vibrational
velocities at bend's curved walls, at r= Ry and r-= Ro.
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